
1

Advanced Modding Manual

2

By Ino-Co Plus LLC (2014) v.1.0

3

Table of Contents
How to prepare and export graphical assets for Warlock 2 ..4

3D ...4

Unit models ..4

Texture creation ...7

Exporting a unit with animations ..8

Setting a unit’s data for the game .. 14

Setting special effects for a unit’s action .. 15

Buildings .. 18

Technical requirements for building models ... 18

Export .. 18

Setting a building’s data for the game ..19

Important technical details for advanced modding... 21

Race trees (adding unit to race) .. 22

How to add a unit to a race (by programming) .. 22

Extra modding ... 24

4

How to prepare and export graphical
assets for Warlock 2

3D
To be able to export any 3D models, one has to copy the BMExport2010.dle into the folder
‘Plugins’ in 3ds Max 2010. The libraries BMCore_Debug.dll, msvcp110d.dll, msvcr110d.dll
should be copied to the main folder of 3ds Max 2010.

Note that only the 32-bit version of 3ds Max 2010 is officially supported by the exporter
plugin!

The next time 3ds Max 2010 is started, the new export menu for SkyFallen engine models
will appear on the main screen:

Remember! All the names of every asset in the game must be unique!

Unit models
Technical 3D model requirements:

 ➢ No more than 4000 polygons.

 ➢ Only Skin modification is supported during model export.

 ➢ In the zero frame, the model must be set in the Skin-pose at the zero
coordinates (origo).

 ➢ Animation bones hierarchies for 16 to 200 bones are supported.
One vertex of a model can have a maximum of 4 dependent bones.
Bones cannot be scaled. There are special tools in the Skyfallen
export menu to check whether a model fulfils the requirements:

 ➢ 512x512 textures are supported. The following formats are

5

supported: dds dxt1 rgb (no alpha), dds dxt1 argb (1-bit alpha), dds
dxt5 argb (8-bit alpha). Additional supported textures: reflection
map mask and unit faction colour mask.

 ➢ To link special effects and logic events to a model, you should
use helper points from the Helpers menu. These points should
be named as in mask ref_* and the names should be no longer
than 32 characters. There are reserved helping points that can
be automatically used in the game for the following cases: ref_p_
missile* - a point from which a shot or spell effect is drawn; ref_
chest_fx_point – a point in which the hit special effect is drawn if
an attack hits a unit. All helper points must be linked to the bones or
meshes of a model.

 ➢ A model has to have the Standard material applied with the
corresponding diffuse map and the following parameter settings:

6

7

Texture creation
The diffuse texture of the zones that will appear as the faction colour in the game should
be desaturated:

Additional masks should be created in a separate file in RGB channels:

G – reflections mask

B – faction colour mask

You can also add normal maps to the texture.

8

Exporting a unit with animations
The following animations are supported:

 ➢ Idle - idle animation (unit doesn’t attack, fight or move).

 ➢ idle_random – random idle movement or action (like stretching or
checking the weapon).

 ➢ attack – main attack animation.

 ➢ special - special animation (attack, special action of a unit, etc.)

 ➢ death – death animation

 ➢ walk – movement animation

Each of the animations should be saved in a separate file.

How to export a model:

1. Check if the model fulfils all technical requirements. All required
scene objects (meshes, animation bones, helper points) need to be
visible (not concealed) or the exporter won’t ‘see’ them.

2. Click ‘Export’ in the SkyFallen menu.

3. In the open window, choose the BloodyMesh file format and name
the file:

4. Set export parameters as shown below:

9

5. Press OK. The export will be saved in a file with a .bma extension.

6. To export animations, open the desired animation file and repeat
the above process, but this time use the export settings found
below:

Pay attention to the frame range for every single animation! If there
are animated objects that are not linked to skeleton animation,
uncheck ‘Skin from static animation’. The file will be exported as a
.bsa file

7. The exported files should be put into a Mod folder. All required textures
also need to be copied to the Mod folder.

10

8. Launch voyer.exe (provided along with the game).

9. Open the exported unit’s .bma file.

10. Adjust the model’s materials. Use the ‘Material properties’ screen to
select the correct type of material:

The following types are available:

 ➛ i_diffuse – This material type only displays the diffuse map.

11

 ➛ i_diffuseref – This material type displays both the diffuse and
reflection maps.

 ➛ i_bump – This material type displays the diffuse map and
normal map.

 ➛ i_bumpref – This material type displays the diffuse map, the
normal map and the reflection map.

 ➛ i_diffusespecref – A special material type with a diffuse map
and a reflection map. Can be used for imitating metal surfaces
with flares and a glare aura.

Next, set up the selected material according to properties desired
(should it cast a shadow, should it glow, should it be transparent
(using alpha-channel), how should the alpha be applied, should it
use the faction colour mask, is it a two-sided material, etc.)

Here is an example of a material after set up:

12

11. Save the material and its settings to the folder with the rest of the
model’s files:

12. Prepare the animation:
From the Mesh screen, select the animation’s .bsa file from the list:

With the help of the Animation Control Centre, you can see the selected
animation on the model. If everything looks good, optimize the animation with
the special instrument and then pack the animation:

13

These steps will result in a .bca file that can be used in the game.

Repeat the process for every animation.

14

Setting a unit’s data for the game
To add the graphical assets of a unit into the game, you have to register them in viewData.
xml. Use the ‘grid’ mode in your xml editor. This is the most suitable mode for the task.
Find the ‘Animations’ section:

In the first column, ‘s_name’, enter the system name of a unit from the game data (see the
manual on unit creation).

 ➢ s_mesh - the name of the .bma file with the model of the unit

 ➢ i_figureCount – number of ‘soldiers’ (separate model copies) in the
unit

 ➢ f_movingSpeed – visual movement speed of the unit

 ➢ f_rotatingSpeed – turning speed of the unit

 ➢ f_scale – model scale (1.0 means that the model will be 100% of its
size in 3ds Max)

 ➢ f_yOffset – vertical offset of the model (for flying units)

 ➢ f_animBlendTime – interpolation time between the animations

 ➢ s_formationName – ‘soldier’ formation in the unit

 ➢ s_size – scale of the unit (for choosing its banner drawing position)

Then you need to fill in the animation parameter columns:

The .bca files for animations should be directed here. You can set the f_speed parameter
for each animation. f_speed determines the animation’s play speed (1.0 is the animation’s
default speed from 3ds Max).

For ‘attack’ and ‘special’ animations, you should set the ‘attack applying’ frame. That
is the frame the game interprets as a ‘moment of action’ (when a shot should be fired
from a bow, or when a sword hit should cause a special effect to be played, etc.) The i_
frameAttack is sufficient for melee attacks. For magical and range attacks you should also
add i_frameWeaponShoot and i_frameEffectShoot:

15

For the death animation, set the frame in which the ‘body’ should hit the ground:

Linking special effects to a unit

To link special effects, fill in the sfxAttachs section of viewData.xml.

Here you enter the ‘system name’ of the unit and add the names of the special effects to
the corresponding helper points. You may also use the default helper point named ‘root’
to link an effect to the unit’s ‘feet’ (to the local zero coordinates). Additionally, you can set
the probability rate for each effect – how probable it is that the effect will occur.

Setting special effects for a unit’s action
To link special effects to unit actions, edit the section ‘actionViews’ in viewData.xml. In the
first column you should set the system name of the action (note that the base attack action
must always be named as the unit itself). The other columns are used to edit the visual
appearance of the action’s effect:

 ➢ i_countMissile – number of ‘missiles’ shot by ships and guard towers.

 ➢ i_rangeCountMissile – allows you to set a random number of guard
tower missiles using the following formulae:

 ➢ Minimum number of missiles = i_countMissile – i_rangeCountMissile

 ➢ Maximum number of missiles = i_countMissile + i_rangeCountMissile

 ➢ Works only for guard towers!!!

16

 ➢ b_directPointing – missile trajectory switch (true – missiles fly straight
into the target, false – missiles fly in an arc).

 ➢ b_waterBattle – set ‘true’ for ships if the ship should turn 90 degrees to
port before firing.

 ➢ b_specialAnim – set ‘true’ if you need the action to use a special
animation (see Setting the unit’s data for the game).

 ➢ s_shootEffect – name of the special effect that spawns in the initial point
of a shot or spell (e.g. flames from a dragon’s mouth or smoke from a gun
barrel).

 ➢ s_shootEffectRefPoint – name of the helper point/points on the model
from which the shot or spell is ‘coming’. You can use masks if there are
several points (e.g. ref_p_missile*).

 ➢ s_shootEffectRefPointR – second set of helper points (is used for ships to
fire from starboard).

 ➢ b_shootEffectFix – set ‘true’ if you need the special effect from ‘s_
shootEffect’ to be linked to the point of ‘shooting’.

 ➢ s_hitEffect – name of the special effect that will spawn when the shot/
spell hits its target.

 ➢ f_flySpeed – missile flying speed.

 ➢ s_flyEffect – name of the special effect on the missile (e.g. flame on
‘burning arrows’).

 ➢ s_flyMesh – the missile’s 3D model.

 ➢ s_flyMeshScale – scale of the missile’s model (1.0 is the actual size of the
model in 3ds Max).

 ➢ f_flyAnimSpeed – speed of the missile’s model animation (e.g. speed of an
axe turning during its flight).

 ➢ RefPoints – helper points on the missile’s model to which the
corresponding effects should be linked. Here is an example:

17

 ➢ s_aoeAttEffect – multihex special effect on a ‘friendly’ unit which
becomes the centre of the effect (e.g. massive damaging spell
around your unit of mages).

 ➢ s_aoeDefEffect – multihex special effect on an enemy when the
shot/spell hits its target.

We recommend creating special effects for new units by copying the settings from
existing ones.

18

Buildings

Technical requirements for building models:

 ➢ No more than 3000 polygons.

 ➢ 512x512 textures are supported. Supported formats: dds dxt1 rgb
(no alpha), dds dxt1 argb (1-bit alpha), dds dxt5 argb (8-bit alpha).
Supported additional textures: reflection map mask and unit’s
faction colour mask.

 ➢ One cycled animation per building (optional). The name of the
animation file should be the same as the name of the building.

 ➢ To link special effects and logic events to a model, you should use
helper points from the Helpers menu. These points should be named
as mask ref_*. The names should be no longer than 32 characters.
There are reserved helping points that can be automatically used
by the game for the following cases: ref_p_missile* - a point from
which a shot or spell effect is drawn, ref_attack_p* – a point where
the special effect for a building being hit is shown, ref_flag* - a
point at which the flag with the faction colour will appear.

 ➢ A model has to have the Standard material (see the requirements for
units).

 ➢ Textures for buildings must be prepared in the same way as unit
textures.

 ➢ One special object named Bg_stamp may be added to the scene.
Bg_stamp is a flat surface for background landscape texture that
will be applied automatically to the landscape under the buildings
in the game.

Export
How to export a model: Check whether the model meets all technical requirements.

1. Click ‘Export’ in the SkyFallen menu.

2. In the open window, choose the path, select the BloodyMesh file
format and name the file.

3. Set export parameters:

19

4. Press OK. The exported file with the model will be in .bms format.

5. Complete the next steps as you would with a unit (from point 7 and
on).

Setting a building’s data for the game
To add the graphical assets of a building to the game, you have to register them in
viewData.xml.

You will need the following sections: castleViews, buildingViews, resourceViews and
specialViews.

CastleViews – visual settings for all cities (castles) in the game.

Here the system name of the castle, its logical size (for matching to the right part of the
building) and data on its model are entered. Castles have upgrade stages and there are
separate models for each stage. For every upgrade model you can independently set the
scale and helper points for special effects.

BuildingViews – a section that covers most of the buildings in the game. Here you can
edit race buildings, monster lairs, etc. The settings are mostly the same as in the previous
section, but there are some additional options:

You can decide if the destroyed building should leave debris, if the building should be

20

oriented toward the water (for shore buildings) and what designates the building’s ‘race’.

ResourceViews – a section where all models for the local in-game resources are set
(local resources are the resources that can be found in the landscape: iron, silver, gold,
pumpkins, etc.)

SpecialViews - special buildings like a free cities or citadels. The main building of the
special city should be named in the CastleViews group, and here you can pre-set the
models for the surrounding hexes:

21

Important technical details for advanced
modding:

Data for all non-published mods is stored in:
Steam\userdata\<userid>\205990\local\mods\

Icons for mods are stored separately in:
Steam\userdata\<userid>\205990\local\icons\

Imported images and temporary 3D model storage for MeshEditor are stored here:
Steam\userdata\<userid>\205990\local\import\

You may create subfolders within those folders using Latin characters.

Published mods to which the player subscribes are stored in pack files.

The mod’s description file is stored in the same folder. The pack file or mod folder is: info-
file in xml format.

Squeezer.exe should be used to pack and unpack mods:

Use:

Squeezer /s archname show the content of the archive

Squeezer /l archname extract filenames from the archive

Squeezer /e archname [path] extract all files to path

Squeezer /f filelist archname [ext1 [ext2 [comp]]] create an archive
using file list

 [ext1] do not compress extensions

 [ext2] do not encrypt extensions

 [comp] use compression level 0..9 (default 1)

Squeezer /d path archname [ext1 [ext2 [comp]]] create an archive using
a tree folder

 [ext1] do not compress extensions

 [ext2] do not encrypt extensions

 [comp] use compression level 0..9 (default 1)

Use this line for ext1 and ext2: .wav.ogg.ogm.mp3.avi.dds.png.tga.jpg.fev.fsb

All operations with Squeezer should be done from the command line.

You may use the same utility to unpack base game data.

Most mod files are stored in the binary format ‘.XR’. The format used inside XR is XML.

To unpack and repack .XR files, use TXMLConvert_Final.exe.

22

How to use this utility from the command line:

Syntax: XRconvert.exe [options] input [output]

files:

 input input file to convert

 output default: ‘input.ext’. output file. set using
input file with automatic extension

options:

 -t:(bin|text|auto) default: ‘auto’. output type

If there is no name for the final file, the utility will create an xml or xr file in the folder
containing the source file.

You can do the same from the Explorer. Just drag and drop the file onto it and a repacked
or unpacked file will be created next to the source file.

You can use any files with only Latin characters in their names. The maximum name
length is 256 characters.

Meshes exported from 3d Max should be placed in the ‘Import’ folder to finalize settings
with MeshEditor.

To use finalized models from MeshEditor, place them in the mod folder.

When the user activates several mods at once, mod data may be overwritten, meaning that
unit h_rogue from the first mod will be changed to unit h_rogue from the second mod
(since they both have same entity name) and so on.

Race trees (adding a unit to a race)
At the moment of writing, building trees can only be affected by one mod at the time!
If one mod has unit mod_h_rogue1 added to the human building tree, and a second mod
has mod_h_warrior1 added to a different build in the human building tree, then only the
latter will show in the game.

How to add a unit into a race (by programming)

Instructions on how to add a new unit into a race:

0. Run the game.

1. Enter Modding->Races->Modify->Choose the Race.

2. Click the ‘Building tree’ button.

3. Close the game.

4. Copy the mod file named as in m<any_number>_<userid>_data.xr
into a different folder.

5. Use command xrconvert m<any_number>_<userid>_data.xr to
extract the .xml from the file. XRconverter can be found in the root

23

game folder.

6. Open m<any_number>_<userid>_data.xml in any xml-editor.

7. Look for the ‘buildingTrees’ node.

<buildingTrees>

 <items>

 <Item>

 <s _ race>humans</s _ race>

...

 </Item>

 </items>

 <disabled/>

</buildingTrees>

8. In the ‘postUnits’ of the needed building (for example bld_c_farm)
write the system name of the unit (you can find it in the same file):

<postUnits>

 <s _ Item>mod _ h _ rogue2</s _ Item>

</postUnits>

9. Add the new node with the new unit and its prerequisites like this:

<building>

 <s _ objectType>mod _ h _ rogue2</s _ objectType>

 <s _ itemType>Unit</s _ itemType>

 <prereqs>

 <s _ uniqueness>None</s _ uniqueness>

 <i _ precityUpgrade>0</i _ precityUpgrade>

 <preBuildings>

 <s _ Item>bld _ c _ farm</s _ Item>

 </preBuildings>

 <preResources/>

 <preLandTypes/>

 <preNearLandTypes/>

 <preGods/>

 </prereqs>

 <postUnits/>

 <postBuildings/>

</building>

24

10. Pack .xml back to xr: xrconvert -t:bin m<any_number>_<userid>_
data.xml

11. Return the mod file .xr back to the mod folder.

Extra modding
You can change data other than that displayed in the editor. First, unpack game data
and find data.xr and viewdata.xr there. Then use XRConvert to unpack it and find the
container of the entity you want to mod.

To change items in those files that are not present in the mod data file (for example, to
change god positions on the religion circle), you will need to cut and paste (and change)
the container of needed entities (which is in the root of the data tree). So from data.xr you
may add containers to m*********_data.xr , and from viewdata.xr to m**************_
viewdata.xr.

An example of god positions on the religion circle:

 <gods> - container

 <items> - entities list

 <Item> - entity

 <s _ name>god _ agrela</s _ name>

 <s _ icon>icon _ god _ agrela</s _ icon>

 <p2 _ position x=‘-0.5’ y=‘-0.85’/>

 <s _ avatar>g _ agrela</s _ avatar>

 </Item>

 </items>

 </gods>

You may create a new god in the same way.

